CART  CONTACT   HELP


Shopping cart  Shopping cart
0 Product(s) in cart
Total $0.00
> Checkout


Recently Viewed..

Home » Books » Polymers and Plastics » Processing Methods » Dip coating

 
Handbook of Fillers, 4th Edition


printer page

 
Handbook of Fillers, 4th Edition
Author: George Wypych
ISBN 978-1-895198-91-1

Published: January 2016
Figures: 615
Tables: 190
Pages: 922
Fourth Edition


Price: $350.00 + S&H
  • Summary
  • Table of Contents
  • Author(s)
  • Related Publications
This handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.

Over 4,000 research papers, mostly published from 1994 to 2015 (over 1000 new papers in this edition), technical data from over 200 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. 

The book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous editions, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers, graphene and other novelty products. 

Fillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. 

The book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. 

One third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by over 200 SEM TEM, AFM micrographs.

The second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.

The last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. This part is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to  position them in the marketplace.

To summarize, major features of this handbook are:

Comprehensive review of literature
The most current information
Information required by scientists, engineers, marketing, sales, and students given in one source
All aspects of filler properties, effects, and application thoroughly reviewed
Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels
1 INTRODUCTION  
1.1 Expectations from fillers 
1.2 Typical filler properties 
1.3 Definitions 
1.4 Classification 
1.5 Markets and trends 
References 

2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY  
2.1 Particulate Fillers  
2.1.1 Aluminum flakes and powders 
2.1.2 Aluminum borate whiskers 
2.1.3 Aluminum nitride 
2.1.4 Aluminum oxide  
2.1.5 Aluminum trihydroxide 
2.1.6 Anthracite 
2.1.7 Antimonate of sodium 
2.1.8 Antimony pentoxide 
2.1.8 Antimony trioxide 
2.1.10 Ammonium octamolybdate 
2.1.11 Apatite 
2.1.12 Ash, fly 
2.1.13 Attapulgite 
2.1.14 Barium metaborate 
2.1.15 Barium sulfate 
2.1.16 Barium & strontium sulfates 
2.1.17 Barium titanate 
2.1.18 Bentonite 
2.1.19 Beryllium oxide 
2.1.20 Boron nitride 
2.1.21 Calcium carbonate 
2.1.22 Calcium fluoride 
2.1.23 Calcium hydroxide 
2.1.24 Calcium phosphate 
2.1.25 Calcium silicate 
2.1.26 Calcium sulfate 
2.1.27 Carbon black  
2.1.28 Carbonyl iron powder 
2.1.29 Cellulose particles 
2.1.30 Ceramic beads 
2.1.31 Chitosan 
2.1.32 Clamshell powder 
2.1.33 Clay 
2.1.34 Cobalt powder 
2.1.35 Copper 
2.1.36 Corn cob powder 
2.1.37 Cristobalite 
2.1.38 Diatomaceous earth 
2.1.39 Dolomite 
2.1.40 Eggshell filler 
2.1.41 Ferrites 
2.1.42 Feldspar 
2.1.43 Gandolinium oxide 
2.1.44 Glass beads 
2.1.45 Gold 
2.1.46 Graphene 
2.1.47 Graphene oxide 
2.1.48 Graphite 
2.1.49 Ground tire powder 
2.1.50 Halloysite 
2.1.51 Huntite 
2.1.52 Hydrous calcium silicate 
2.1.53 Illite 
2.1.54 Iron 
2.1.55 Iron oxide  
2.1.56 Kaolin 
2.1.57 Lead oxide  
2.1.58 Lithopone  
2.1.59 Magnesium oxide  
2.1.60 Magnesium hydroxide  
2.1.61 Magnetite 
2.1.62 Metal-containing conductive materials 
2.1.63 Mica 
2.1.64 Molybdenum 
2.1.65 Molybdenum disulfide 
2.1.66 Molybdic oxide 
2.1.67 Nanofillers 
2.1.68 Nickel 
2.1.69 Nickel oxide 
2.1.70 Nickel zinc ferrite 
2.1.71 Nutshell powder 
2.1.72 Perlite 
2.1.73 Polymeric fillers 
2.1.74 Potassium hexatitanate whiskers 
2.1.75 Pumice 
2.1.76 Pyrophyllite 
2.1.77 Rubber particles 
2.1.78 Sepiolite 
2.1.79 Silica  
2.1.79.1 Fumed silica 
2.1.79.2 Fused silica  
2.1.79.3 Precipitated silica 
2.1.79.4 Quartz (Tripoli)  
2.1.79.5 Sand  
2.1.79.6 Silica gel 
2.1.80 Silicon carbide 
2.1.81 Silicon nitride 
2.1.82 Silver powder and flakes 
2.1.83 Slate flour  
2.1.84 Talc  
2.1.85 Titanium dioxide 
2.1.86 Tungsten  
2.1.87 Vermiculite  
2.1.88 Wollastonite  
2.1.89 Wood flour and similar materials 
2.1.90 Zeolites  
2.1.91 Zinc borate  
2.1.92 Zinc oxide  
2.1.93 Zinc stannate  
2.1.94 Zinc sulfide  
2.2 Fibers  
2.2.1 Aramid fibers 
2.2.2 Carbon fibers  
2.2.3 Carbon nanotubes 
2.2.4 Cellulose fibers  
2.2.5 Glass fibers  
2.2.6 Other fibers  
References  

3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING  
3.1 Filler packaging 
3.2 External transportation 
3.3 Filler receiving  
3.4 Storage  
3.5 In-plant conveying  
3.6 Semi-bulk unloading systems 
3.7 Bag handling equipment  
3.8 Blending  
3.9 Feeding  
3.10 Drying  
3.11 Dispersion  
References 

4 QUALITY CONTROL OF FILLERS  
4.1 Absorption coefficient 
4.2 Acidity or alkalinity of water extract 
4.3 Ash content  
4.4 Brightness  
4.5 Coarse particles 
4.6 Color  
4.7 CTAB surface area 
4.8 Density  
4.9 Electrical properties 
4.10 Extractables  
4.11 Fines content  
4.12 Heating loss  
4.13 Heat stability  
4.14 Hegman fineness  
4.15 Hiding power  
4.16 Iodine absorption number  
4.17 Lightening power of white pigments 
4.18 Loss on ignition  
4.19 Mechanical and related properties 
4.20 Oil absorption  
4.21 Particle size  
4.22 Pellet strength  
4.23 pH  
4.24 Resistance to light 
4.25 Resistivity of aqueous extract  
4.26 Sieve residue 
4.27 Soluble matter  
4.28 Specific surface area 
4.29 Sulfur content  
4.30 Tamped volume  
4.31 Tinting strength  
4.32 Volatile matter  
4.33 Water content  
4.34 Water-soluble sulfates, chlorides and nitrates 
References  

5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS  
5.1 Density 
5.2 Particle size 
5.3 Particle size distribution 
5.4 Particle shape  
5.5 Particle surface morphology and roughness 
5.6 Specific surface area  
5.7 Porosity  
5.8 Particle-particle interaction and spacing 
5.9 Agglomerates  
5.10 Aggregates and structure 
5.11 Flocculation and sedimentation 
5.12 Aspect ratio  
5.13 Packing volume  
5.14 pH 
5.15 Zeta-potential 
5.16 Surface energy 
5.17 Moisture  
5.18 Absorption of liquids and swelling 
5.19 Permeability and barrier properties  
5.20 Oil absorption  
5.21 Hydrophilic/hydrophobic properties 
5.22 Optical properties  
5.23 Refractive index  
5.24 Friction properties  
5.25 Hardness  
5.26 Intumescent properties 
5.27 Thermal conductivity  
5.28 Thermal expansion coefficient 
5.29 Thermal degradation 
5.30 Melting temperature 
5.31 Glass transition temperature  
5.32 Electrical properties  
5.33 Relative permittivity 
5.34 Electrical percolation 
5.35 EMI shielding 
5.36 Magnetic properties  
5.37 Shape memory 
References  

6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS  
6.1 Reactivity 
6.2 Chemical groups on the filler surface 
6.3 Filler surface modification  
6.4 Filler modification and material properties 
6.5 Resistance to various chemicals  
6.6 Cure in fillers presence  
6.7 Polymerization in fillers presence 
6.8 Grafting  
6.9 Crosslink density  
6.10 Reaction kinetics  
6.11 Molecular mobility  
References  

7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS  
7.1 Particle distribution in matrix 
7.2 Orientation of filler particles in a matrix 
7.3 Voids  
7.4 Matrix-filler interaction 
7.5 Chemical interactions  
7.6 Other interactions  
7.7 Interphase organization 
7.8 Interfacial adhesion  
7.9 Interphase thickness  
7.10 Filler-chain links  
7.11 Chain dynamics  
7.12 Bound rubber  
7.13 Debonding  
7.14 Mechanisms of reinforcement  
7.15 Benefits of organization on molecular level 
References  

8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS  
8.1 Tensile strength and elongation 
8.2 Tensile yield stress  
8.3 Mullins’ effect 
8.4 Elastic modulus  
8.5 Flexural strength and modulus  
8.6 Impact resistance  
8.7 Hardness  
8.8 Tear strength 
8.9 Compressive strength 
8.10 Fracture resistance  
8.11 Wear  
8.12 Friction  
8.13 Abrasion  
8.14 Scratch resistance 
8.15 Fatigue  
8.16 Failure  
8.17 Adhesion  
8.18 Thermal deformation 
8.19 Shrinkage  
8.20 Warpage  
8.21 Compression set 
8.22 Load transfer  
8.23 Residual stress  
8.24 
 Creep  
References  

9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS  
9.1 Viscosity 
9.2 Flow  
9.3 Flow induced filler particle orientation 
9.4 Torque  
9.5 Viscoelasticity 
9.6 Dynamic mechanical behavior 
9.7 Complex viscosity  
9.8 Shear viscosity  
9.9 Elongational viscosity 
9.10 Melt rheology  
9.11 Yield value  
References  

10 MORPHOLOGY OF FILLED SYSTEMS  
10.1 Crystallinity 
10.2 Crystallization behavior 
10.3 Nucleation  
10.4 Crystal size  
10.5 Spherulites  
10.6 Transcrystallinity 
10.7 Orientation  
References  

11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS  
11.1 Irradiation 
11.2 UV radiation  
11.3 Temperature  
11.4 Liquids and vapors 
11.5 Stabilization  
11.6 Degradable materials 
References  

12 FLAMMABILITY OF FILLED MATERIALS  
12.1 Definitions 
12.2 Limiting oxygen index 
12.3 Ignition and flame spread rate 
12.4 Heat transmission rate  
12.5 Decomposition and combustion 
12.6 Emission of gaseous components 
12.7 Smoke  
12.8 Char  
12.9 Recycling 
References  

13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA  
13.1 Adhesion promoters 
13.2 Antistatics  
13.3 Blowing agents  
13.4 Catalysts  
13.5 Compatibilizers 
13.6 Coupling agents  
13.7 Dispersing agents and surface active agents 
13.8 Flame retardants  
13.9 Impact modifiers  
13.10 UV stabilizers  
13.11 Other additives  
References  

14 TESTING METHODS IN FILLED SYSTEMS  
14.1 Physical methods 
14.1.1 Atomic force microscopy  
14.1.2 Autoignition test  
14.1.3 Bound rubber  
14.1.4 Char formation  
14.1.5 Cone calorimetry  
14.1.6 Contact angle  
14.1.7 Dispersing agent requirement 
14.1.8 Dispersion tests  
14.1.9 Dripping test  
14.1.10 Dynamic mechanical analysis 
14.1.11 Electric constants determination 
14.1.12 Electron microscopy  
14.1.13 Fiber orientation  
14.1.14 Flame propagation test 
14.1.15 Glow wire test  
14.1.16 Image analysis  
14.1.17 Limiting oxygen index 
14.1.18 Magnetic properties  
14.1.19 Optical microscopy  
14.1.20 Particle size analysis  
14.1.21 Radiant panel test  
14.1.22 Rate of combustion  
14.1.23 Scanning acoustic microscopy 
14.1.24 Smoke chamber  
14.1.25 Sonic methods  
14.1.26 Specific surface area 
14.1.27 Thermal analysis  
14.2 Chemical and instrumental analysis 
14.2.1 Electron spin resonance  
14.2.2 Electron spectroscopy for chemical analysis 
14.2.3 Inverse gas chromatography  
14.2.4 Gas chromatography  
14.2.5 Gel content  
14.2.6 Infrared and Raman spectroscopy 
14.2.7 Nuclear magnetic resonance spectroscopy 
14.2.8 UV and visible spectophotometry  
14.2.9 X-ray analysis  
References  

15 FILLERS IN COMMERCIAL POLYMERS  
15.1 Acrylics 
15.2 Acrylonitrile-butadiene-styrene copolymer 
15.3 Acrylonitrile-styrene-acrylate  
15.4 Aliphatic polyketone  
15.5 Alkyd resins  
15.6 Bismaleimide 
15.7 Cellulose acetate 
15.8 Chitosan 
15.9 Elastomers  
15.10 Epoxy resins  
15.11 Ethylene vinyl acetate copolymer 
15.12 Ethylene vinyl alcohol copolymer 
15.13 Ethylene-ethyl acetate copolymer  
15.14 Ethylene-propylene copolymers  
15.15 Ionomers  
15.16 Liquid crystalline polymers 
15.17 Perfluoroalkoxy resin  
15.18 Phenolic resins  
15.19 Poly(acrylic acid)  
15.20 Polyacrylonitrile 
15.21 Polyamides  
15.22 Polyamideimide  
15.23 Polyamines  
15.24 Polyaniline  
15.25 Polyaryletherketone 
15.26 Poly(butylene succinate) 
15.27 Poly(butylene terephthalate) 
15.28 Polycaprolactone  
15.29 Polycarbonate 
15.30 Polydicyclopentadiene  
15.31 Polyetheretherketone 
15.32 Polyetherimide  
15.33 Polyether sulfone  
15.34 Polyethylene  
15.35 Polyethylene, chlorinated  
15.36 Polyethylene, chlorosulfonated  
15.37 Poly(ethylene oxide)  
15.38 Poly(ethylene terephthalate) 
15.39 Polyimide  
15.41 Polymethylmethacrylate 
15.42 Polyoxymethylene  
15.43 Poly(phenylene ether) 
15.44 Poly(phenylene sulfide)  
15.45 Polypropylene  
15.46 Polypyrrole  
15.47 Polystyrene & high impact  
15.48 Polysulfide  
15.49 Polysulfone  
15.50 Polytetrafluoroethylene 
15.51 Polyurethanes  
15.52 Poly(vinyl acetate) 
15.53 Poly(vinyl alcohol) 
15.54 Poly(vinyl butyral)  
15.55 Poly(vinyl chloride)  
15.56 Rubbers  
15.56.1 Natural rubber 
15.56.2 Nitrile rubber  
15.56.3 Polybutadiene rubber  
15.56.4 Polybutyl rubber  
15.56.5 Polychloroprene  
15.56.6 Polyisobutylene  
15.56.7 Polyisoprene  
15.56.8 Styrene-butadiene rubber 
15.57 Silicones  
15.58 Styrene-acrylonitrile copolymer 
15.59 Tetrafluoroethylene-perfluoropropylene 
15.60 Unsaturated polyesters  
15.61 Vinylidene-fluoride terpolymers  
References  

16 FILLER IN MATERIALS COMBINATIONS  
16.1 Blends, alloys and interpenetrating networks 
16.2 Composites  
16.3 Nanocomposites  
16.4 Laminates  
References  

17 FORMULATION WITH FILLERS  
References  

18 FILLERS IN DIFFERENT PROCESSING METHODS  
18.1 Blow molding 
18.2 Calendering and hot-melt coating 
18.3 Compression molding  
18.4 Dip coating  
18.5 Dispersion  
18.6 Extrusion  
18.7 Foaming  
18.8 Injection molding 
18.9 Knife coating  
18.10 Mixing  
18.11 Pultrusion  
18.12 Reaction injection molding 
18.13 Resin transfer molding 
18.14 Rotational molding  
18.15 Sheet molding 
18.16 Spinning  
18.17 Thermoforming  
18.18 Welding and machining  
References  

19 FILLERS IN DIFFERENT PRODUCTS  
19.1 Adhesives  
19.2 Agriculture  
19.3 Aerospace 
19.4 Appliances  
19.5 Automotive materials  
19.6 Bottles and containers  
19.7 Building components  
19.8 Business machines  
19.9 Cable and wire  
19.10 Coated fabrics  
19.11 Coatings and paints 
19.12 Cosmetics and pharmaceutical products 
19.13 Dental restorative composites  
19.14 Electrical and electronic materials  
19.15 Electromagnetic interference shielding  
19.16 Fibers  
19.17 Film  
19.18 Foam  
19.19 Food and feed 
19.20 Friction materials 
19.21 Geosynthetics  
19.22 Hoses and pipes  
19.23 Magnetic devices  
19.24 Medical applications  
19.25 Membranes  
19.26 Noise damping  
19.27 Optical devices  
19.28 Paper  
19.29 Radiation shields 
19.30 Railway transportation  
19.31 Roofing  
19.32 Telecommunication 
19.33 Tires  
19.34 Sealants  
19.35 Siding  
19.36 Sports equipment  
19.37 Waterproofing  
19.38 Windows  
References  

20 HAZARDS IN FILLER USE  
References  
INDEX
George Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research & development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley & Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation & Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.

« Previous | Next »