CART  CONTACT   HELP


Shopping cart  Shopping cart
0 Product(s) in cart
Total $0.00
> Checkout


Recently Viewed..

Home » Books » Rubber » Compounding

 
Handbook of Plasticizers, 2nd Edition


printer page

 
Handbook of Plasticizers, 2nd Edition
Author: George Wypych Editor
ISBN 978-1-895198-50-8

Published: 2012
Pages 748, Tables 114, Figures 416, References 3876

Price: $285.00 + S&H
  • Summary
  • Table of Contents
  • Author(s)
  • Related Publications
This book contains comprehensive review of information available in open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The book contains information from the most recent sources and updated information from the previous edition. 
The information available today permits to use plasticizers more effectively and to avoid certain plasticizers in applications where they may cause health or material durability problems. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing variety of materials which may have different reactions to the presence of plasticizers. Plasticizer's choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.

Both aspects considered indicate the need for comprehensive source which, using currently available means of computerized database should provide data and a broad background of theoretical information in condensed form easy to search. 

All numerical data are in the form of database (see information on Plasticizer Database which is a separate publication), whereas the theoretical component of information is given in the traditional form of a printed book.

Twenty one chapters are included in Handbook of Plasticizers. Full Table of Contents is also available for review. Only some chapters are discussed here to add more information which may not be obvious from the table of contents.

Data are available for large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers which belong to one of the groups and also to give ranges of expected properties for a given group.

Chapters 5, 6 and 7 contain new and historical approaches, which explain mechanisms of plasticizers action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies which help in understanding these steps and parameters which may control them.

Twenty five Sections of Chapter 10 discuss plasticizers effect on physical and mechanical properties of plasticized materials. These sections are very essential for understanding the behavior of materials and principles of their formulation. 

Chapter 11 contains data on use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives, and Typical formulations. Use of such consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. 

Similar, Chapter 13 discusses use of plasticizers in 34 groups of products according to a similar breakdown including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizers use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.

In Chapter 14 attempts are being made to discuss the following topics: Effect of plasticizers on process conditions, Processing defects formation and elimination with use of plasticizers, Influence of rheological changes on process, Equipment maintenance, and Energy consumption. This chapter discusses 15 methods of polymer and rubber processing.
Several chapters which follow discuss various aspects of plasticizer effect on health, safety, and environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers effect on health and safety. Chapter 18 contains information on plasticizers persistence in soil and water. Plasticizers releases and their presence in environment are discussed for many important commercial plasticizers.

This short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers. Especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide right answers. This book should be used in conjunction with Plasticizer Database which gives information on the present status and properties of industrial and research plasticizers.

1 INTRODUCTION 
1.1 Historical developments 
1.2 Expectations from plasticizers
1.3 Definitions 
1.4 Classification 

2 PLASTICIZER TYPES
2.1 Introduction 
2.2 Characteristic properties of industrial plasticizers 
2.2.1 Abietates 
2.2.2 Adipates 
2.2.3 Alkyl sulfonates 
2.2.4 Amides and amines 
2.2.5 Azelates
2.2.6 Benzoates
2.2.7 Bioplasticizers 
2.2.8 Biodegradable plasticizers 
2.2.9 Chlorinated paraffins 
2.2.10 Citrates 
2.2.11 Cycloxehane dicarboxylate 
2.2.12 Cyclohexane dicarboxylic acid, diisononyl ester
Max Kron 
2.2.13 Energetic plasticizers
2.2.14 Epoxides
2.2.15 Esters of C10-30 dicarboxylic acids 
2.2.16 Ether-ester plasticizers
2.2.17 Glutarates
2.2.18 Hydrocarbon oils 
2.2.19 Isobutyrates
2.2.20 Maleates 
2.2.21 Oleates 
2.2.22 Pentaerythritol derivatives 
2.2.23 Phosphates 
2.2.24 Phthalate-free plasticizers 
2.2.25 Phthalates 
2.2.26 Polymeric plasticizers 
2.2.27 Ricinoleates 
2.2.28 Sebacates 
2.2.29 Sulfonamides 
2.2.30 Superplasticizers and plasticizers for concrete
2.2.31 Tri- and pyromellitates
2.2.32 Other plasticizers 
2.3 Methods of synthesis and their effect on properties of plasticizers
2.4 Reactive plasticizers and internal 

3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS
3.1 Abbreviations, terminology, and vocabulary
3.2 Acid number
3.3 Aging studies
3.4 Ash 
3.5 Brittleness temperature
3.6 Brookfield viscosity 
3.7 Chemical resistance 
3.8 Color
3.9 Compatibility
3.10 Compression set 
3.11 Concrete additives 
3.12 Electrical properties 
3.13 Extractable matter 
3.14 Flash and fire point 
3.15 Fogging
3.16 Fusion
3.17 Gas chromatography
3.18 Hardness 
3.19 Infrared analysis of plasticizers 
3.20 Kinematic viscosity 
3.21 Marking (classification)
3.22 Melt rheology
3.23 Migration 
3.24 Poly(vinyl chloride) – standard specification 
3.25 Powder-mix time
3.26 Purity
3.27 Refractive index
3.28 Residual contamination
3.29 Sampling 
3.30 Saponification value
3.31 Saybolt viscosity
3.32 Sorption of plasticizer
3.33 Specific gravity 
3.34 Specification
3.35 Staining 
3.36 Stiffness
3.37 Tensile properties
3.38 Thermal expansion coefficient 
3.39 Unsaponifiable contents 
3.40 Viscosity of plastisols and organosols 
3.41 Water concentration
3.42 Weight 

4 TRANSPORTATION AND STORAGE
4.1 Transportation
4.2 Storage 


5 MECHANISMS OF PLASTICIZERS ACTION
A. Marcilla and M. Beltrán 
5.1 Classical theories 
5.1.1 The lubricity theory
5.1.2 The gel theory 
5.1.3 Moorshead's empirical approach 
5.2 The free volume theory
5.2.1 Mathematical models 

6 THEORIES OF COMPATIBILITY
Valery Yu. Senichev and Vasiliy V. Tereshatov 
6.1 Compatibility concepts 
6.1.1 Thermodynamic treatment 
6.1.2 Interaction parameter
6.1.3 Effect of chemical structure of plasticizers and matrix 
6.2 Solubility parameter and the cohesive energy density 
6.2.1 Solubility parameter concept 
6.2.2 Experimental evaluation of solubility parameters of plasticizers 
6.2.3 Methods of experimental evaluation and calculation of solubility parameters of polymers 
6.2.4 The methods of calculation of solubility parameters 
6.2.5 Multi-dimensional approaches 
6.3 Methods of plasticizer selection based on principles of compatibility
6.3.1 How much plasticizer is necessary for a polymer composition? 
6.3.2 Initial experimental estimation of compatibility 
6.3.3 Thermodynamic compatibility 
6.4 Practical approaches in using theory of compatibility for plasticizers selection 
6.5 Experimental data illustrating effect of compatibility on plasticized systems 
6.5.1 Influence of compatibility on the physical stability of the plasticized polymer
6.5.2 Influence of compatibility on viscosity of the plasticized composition
6.5.3 Influence of compatibility on mechanical properties and physical properties of plasticized polymer
7 PLASTICIZER MOTION AND DIFFUSION
7.1 Plasticizer diffusion rate and the methods of study
7.2 Plasticizer motion and distribution in matrix 
7.3 Plasticizer migration
7.4 Plasticizer distribution in materials in contact 
Vasiliy V Tereshatov and Valery Yu Senichev
7.5 Antiplasticization 
7.6 Effect of diffusion and mobility of plasticizers on their 

8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION
8.1 Plasticizer consumption by fillers 
8.2 Solubility of additives in plasticizers 
8.3 Additive molecular mobility and transport in the presence of plasticizers 
8.4 Effect of plasticizers on polymerization and curing reactions 

9 PLASTICIZATION STEPS 
A. Marcilla, J. C. García and M. Beltrán 
9.1 Plasticization steps
9.2 Studies of plastisol's behavior during gelation and fusion
9.2.1 Rheological characterization 
9.2.2 Studies by scanning electron microscopy 
9.2.3 Study of polymer-plasticizer interactions by DSC 
9.2.4 Study of polymer-plasticizer interactions by SALS
9.2.5 Study of polymer-plasticizer interactions by FTIR 
9.2.6 Study of polymer-plasticizer interactions by 

10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS
10.1 Mechanical properties
10.1.1 Tensile strength 
10.1.2 Elongation
10.1.3 Hardness
10.1.4 Toughness, stiffness, ductility, modulus
10.1.5 Other mechanical properties 
10.2 Optical properties 
10.3 Spectral properties 
10.4 Gloss 
10.5 Sound
10.6 Rheological properties 
Juan Carlos Garcia, and Antonio Francisco Marcilla 
10.6.1 Torque measurement in mixers
10.6.2 Capillary viscometers 
10.6.3 Dynamic experiments 
10.6.4 Rheology of PVC plastisols 
10.7 Magnetorheological properties
10.8 Electrical properties 
10.9 Influence of plasticizers on the glass transition temperature of polymers 
Valery Yu Senichev and Vasiliy V Tereshatov 
10.10 Flammability and smoke formation in the presence of plasticizers 
10.11 Thermal degradation 
10.11.1 Thermal degradation of plasticizer 
10.11.2 Effect of polymer degradation products on plasticizers 
10.11.3 Effect of plasticizer degradation products on polymer degradation
10.11.4 Loss of plasticizer from material due to the chemical decomposition reactions and evaporation 
10.11.5 Effect of plasticizers on the thermal degradation of material 
10.12 Effect of UV and ionized radiation on plasticized materials
10.13 Hydrolysis 
10.14 Biodegradation in the presence of plasticizers 
10.15 Crystallization, structure, and orientation of macromolecules 
10.16 Morphology
10.17 Plasticizer effect on contact with other materials
10.18 Influence of plasticizers on swelling of crossliked elastomers 
Vasiliy V. Tereshatov, Valery Yu. Senichev 
10.18.1 Change of elastic properties of elastomers on swelling in liquids of different polarity  
10.18.2 Influence of swelling on viscsolelastic properties of crosslinked amorphous elastomers
10.18.3 Influence of swelling on tensile strength and critical strain of elastic materials 
10.19 The swelling of nano-heterogenous coatings in plasticizers 
Vasiliy V.Tereshatov, Valery Yu. Senichev, Marina A. Makarova 
10.20 Peculiarities of plasticization of polyurethanes by binary plasticizers 
Vasiliy V. Tereshatov, Valery Yu. Senichev, Vladimir N. Strel'nikov, 
Elsa N. Tereshatova, Marina A. Makarova 
10.21 Self-healing 
10.22 Shrinkage
10.23 Soiling 
10.24 Free volume 
10.25 Effect of plasticizers on other properties

11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS
11.1 ABS 
11.2 Acrylics 
11.3 Bromobutyl rubber 
11.4 Butyl terpolymer
11.5 Cellulose acetate 
11.6 Cellulose butyrates and propionates 
11.7 Cellulose nitrate 
11.8 Chitosan
11.9 Chlorinated polyvinyl chloride 
11.10 Chlorosulfonated polyethylene 
11.11 Copolymers 
11.12 Cyanoacrylates
11.13 Ethylcellulose
11.14 Ethylene-propylene-diene copolymer, EPDM 
11.15 Epoxy resin 
11.16 Ethylene-vinyl acetate copolymer, EVA 
11.17 Ionomers 
11.18 Nitrile rubber
11.19 Perfluoropolymers 
11.20 Polyacrylonitrile
11.21 Polyamide
11.22 Polyamine 
11.23 Polyaniline 
11.24 Polybutadiene
11.25 Polybutylene 
11.26 Poly(butyl methacrylate)
11.27 Polycarbonate
11.28 Polyester 
11.29 Polyetherimide 
11.30 Polyethylacrylate 
11.31 Polyethylene 
11.32 Poly(ethylene oxide) 
11.33 Poly(3-hydroxybutyrate) 
11.34 Polyisobutylene
11.35 Polyisoprene 
11.36 Polyimide 
11.37 Polylactide
11.38 Polymethylmethacrylate 
11.39 Polypropylene
11.40 Poly(propylene carbonate) 
11.41 Poly(N-vinylcarbazole) 
11.42 Poly(N-vinylpyrrolidone) 
11.43 Poly(phenylene ether) 
11.44 Poly(phenylene sulfide)
11.45 Polystyrene 
11.46 Polysulfide 
11.47 Polysulfone 
11.48 Polyurethanes
Vasiliy Tereshatov V., Valery Senichev Yu., Elsa Tereshatova N., Marina Makarova A. 
11.49 Polyvinylacetate
11.50 Polyvinylalcohol 
11.51 Polyvinylbutyral 
11.52 Polyvinylchloride 
11.53 Polyvinyl fluoride 
11.54 Polyvinylidenefluoride 
11.55 Polyvinylidenechloride 
11.56 Proteins 
11.57 Rubber, natural
11.58 Silicone
11.59 Styrene-butadiene rubber 
11.60 Styrene-butadiene-styrene rubber 
11.61 Starch

12 PLASTICIZERS IN POLYMER BLENDS 
12.1 Plasticizer partition between component polymers 
12.2 Interaction of plasticizers with blend components 
12.3 Effect of plasticizers on blend properties 
12.4 Blending to reduce or to replace plasticizers 

13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS
13.1 Adhesives and sealants 
13.2 Aerospace 
13.3 Agriculture 
13.4 Automotive applications 
13.5 Cementitious materials 
13.6 Coated fabrics
13.7 Composites 
13.8 Cosmetics
13.9 Cultural heritage
13.10 Dental materials 
13.11 Electrical and electronics 
13.12 Fibers
13.13 Film 
13.14 Food 
13.15 Flooring 
13.16 Foams
13.17 Footwear 
13.18 Fuel cells 
13.19 Gaskets
13.20 Household products 
13.21 Inks, varnishes, and lacquers 
13.22 Medical applications 
13.23 Membranes 
13.24 Microspheres 
13.25 Paints and coatings 
13.26 Pharmaceutical products 
13.27 Photographic materials
13.28 Pipes 
13.29 Roofing materials 
13.30 Tires
13.31 Toys 
A. Marcilla, J.C. García, and M. Beltran 
13.32 Tubing
13.33 Wire and cable 


14 PLASTICIZERS IN VARIOUS PROCESSING METHODS 
14.1 Blow molding 
14.2 Calendering 
14.3 Coil coating 
14.4 Compression molding 
14.5 Compounding (mixing) 
14.6 Dip coating 
14.7 Dry blending 
14.8 Extrusion 
14.9 Injection molding 
14.10 Polymer synthesis 
14.11 Rotational molding 
M. Beltrán, J. C. Garcia and A. Marcilla 
14.12 Rubber processing 
14.13 Thermoforming
14.14 Web coating 
14.15 Wire coating 



15 SPECIALIZED ANALYTICAL METHODS IN PLASTICIZER TESTING
15.1 Plasticizer identification 
15.2 Methods of determination of plasticizer concentration 
15.3 Determination of volatility, molecular motion, diffusion, and migration 
15.4 Methods of study of plasticized materials 

16 MATHEMATICAL MODELLING IN APPLICATION TO PLASTICIZERS
16.1 PVC-plasticizer interaction model 
16.2 Gas permeation
16.3 Migration
16.4 Dry-blending time 
16.5 Gelation and fusion 
16.6 Thermal decomposition

17 HEALTH AND SAFETY ISSUES WITH PLASTICIZERS AND PLASTICIZED MATERIALS 
17.1 Adjuvant effect of plasticizers 
Søren Thor Larsen
17.1.1 Introduction
17.1.2 Airway allergy
17.1.3 Adjuvant effect 
17.1.4 Adjuvant effect of phthalate plasticizers? 
17.1.5 Conclusions 
17.2 The rodent hepatocarcinogenic response to phthalate plasticizers: basic biology and human 
extrapolation
Claire Sadler, Ann-Marie Bergholm, Nicola Powles-Glover, and Ruth A Roberts
17.2.1 Introduction
17.2.2 Gene expression and cancer toxicology 
17.2.2.1 Gene expression
17.2.2.2 Cancer biology: some basic considerations 
17.2.2.3 Chemical carcinogenesis 
17.2.3 Peroxisome proliferators and rodent nongenotoxic hepatocarcinogenesis 
17.2.3.1 The peroxisome proliferators 
17.2.3.2 PPARα 
17.2.4 Species differences in response to PPS
17.2.5 Chemical regulation 
17.2.6 Summary 
17.3 The influence of maternal nutrition on phthalate teratogenicity 
Janet Y. Uriu-Adams and Carl L. Keen
17.3.1 Introduction 
17.3.2 Reproductive toxicity of BBP and DEHP
17.3.3 Acute phase response-induced alterations in maternal and conceptus nutrient metabolism 
17.3.4 Concluding comments
17.3.5 Acknowledgements 
17.4 Public health implications of phthalates: A review of findings from the U.S. National  Toxicology Program's Expert Panel Reports
Stephanie R. Miles-Richardson
17.4.1 Introduction
17.4.2 Exposure to adults in the general population 
17.4.3 Exposure of vulnerable sub-populations
17.4.4 Health effects of phthalate exposure 
17.4.5 US NTP expert panel conclusions
17.4.6 Public health implications
17.5 Plasticizers in the indoor environment 
Werner Butte
17.5.1 Introduction 
17.5.2 Sources of indoor plasticizers 
17.5.3 Occurrence of plasticizers indoors 
17.5.4 Impact of plasticizers in the indoor environment
17.5.5 Summary 
Addendum 
18 THE ENVIRONMENTAL FATE OF PLASTICIZERS 
William R. Roy
18.1 Introduction 
18.1.1 Releases to the environment
18.1.2 Levels in the environment
18.2 Plasticizers in water
18.2.1 Solubility 
18.2.2 Volatilization from water 
18.2.3 Abiotic degradation in water 
18.2.4 Biodegradation in water
18.2.5 Adsorption from water
18.3 Soil and sediment 
18.3.1 Volatilization 
18.3.2 Biodegradation in soil 
18.4 Organisms 
18.5 Air 
Summary and concluding remarks 

19 REGULATIONS AND DATA 
19.1 Toxic substance control
19.2. Carcinogenic effect
19.3 Teratogenic and mutagenic effect 
19.4 Workplace exposure limits 
19.5 Exposure from consumer products 
19.6 Plasticizers in drinking water 
19.7 Food regulatory acts
19.8 Medical and other applications

20 PERSONAL PROTECTION 
20.1 Clothing 
20.2 Gloves
20.3 Eye protection 
20.4 Respiratory protection 

21 PLASTICIZER RECOVERY & RECYCLING 
INDEX 

George Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research & development. He has published 18 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley & Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st,  2nd, and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, 1st and 2nd Editions, Handbook of Antistatics, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, Handbook of Antiblocking, Release, and Slip Additives 1st and 2nd Editions, Handbook of UV Degradation and Stabilization, PVC Degradation & Stabilization, The PVC Formulary, Atlas of Material Damage, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.

« Previous | Next »